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Transient multidimensional forms of the heat equation are developed with alter- 
nating-direction-implicit (ADI) methods. Nonlinearities which stem from boundary 
conditions and variable properties are approximated in a piecewise linear manner. 
The resulting AD1 forms of the heat equation are successfully demonstrated on a diverse 
pair of applications consisting of an air-to-ground missile design and an orbiting hollow 
cube exposed to short-duration radiation. In both applications, the AD1 equations 
prove to be an order of magnitude more economical of computer time than the tradi- 
tional Crank-Nicolson method. Moreover, the ADI equations prove to be less sensitive 
to approximation of nonlinearities than the DuFort-Frankel explicit method. 

I. INTRODUCTION 

In the present paper, alternating-direction-implicit (ADI) methods are applied 
to the transient multidimensional heat equation with variable properties. With 
analytical methods, representation of variable properties requires modification 
of the governing equation. However, with numerical methods, the use of the 
constant-property equation in a piecewise linear manner will yield approximate 
solutions when reasonably small time steps are used and nonlinearities are not 
too severe. In most practical applications, these constraints are satisfied. Two 
actual problem solutions, an air-to-ground missile flight and an orbiting hollow 
cube, are presented to illustrate the engineering approximations which facilitate 
this otherwise formidable task. Comparisons to better known methods help 
demonstrate the efficiency of AD1 methods. 

An earlier extensive survey of difference methods [l] found that for three- 
dimensional conduction with radiation boundary conditions, the AD1 methods of 
Douglas [2] and Douglas and Gunn [3] were an order of magnitude faster than the 
widely used Crank-Nicolson method [4]. Another AD1 method by Brian [5] was 
considered for this work but offered no advantage over that of Douglas. 

Explicit differencing, while simple in concept, usually requires an order of 
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magnitude more small time steps than implicit methods in order to maintain 
stability. An exceptional scheme which is both explicit and unconditionally stable 
was developed by DuFort and Frankel [6] as a perturbation of the famous 
Richardson method which is unconditionally unstable as discussed in Ames 
[7, p. 3271. The DuFort-Frankel method is a very effective technique in practice 
[8] when nonlinearities from boundary conditions and/or variable properties are 
not dominant. Other unconditionally stable explicit methods such as those of 
Saul’yev [9] and Barakat and Clark [lo] are also available. 

The decision to use an implicit method, the best approach to which is AD1 
[l], was dictated by the severe nonlinearities in the applications of interest. That is, 
severe nonlinearities necessitate approximations to which AD1 techniques are 
relatively insensitive. To further establish the efficacy of ADI methods, consider 
statements in the literature. Isaacson and Keller [I l] survey difference methods 
for partial differential equations and conclude that “... the analytical methods 
developed for the treatment of partial differential equations are, in general, not 
suited for the efficient numerical evaluation of solutions.” Further along, these 
authors [ 1 I] conclude, “We have thus shown that the alternating direction method 
is more efficient than any of the other iterative schemes, even when parameters 
that are not necessarily optimal are employed.” In another text, Smith [12] says, 
“The most efficient method at present for rectangular regions is one proposed by 
Peaceman and Rachford [13] in 1955.” Here it should be noted that the generalized 
AD1 methods of Douglas [2], which we will use, are equivalent to that of Peaceman 
and Rachford in two dimensions and that of Crank-Nicolson in one dimension. 

With the foregoing justifications, we proceed to develop the AD1 equations for 
the fully three-dimensional case as well as another set for the two-dimensional 
axisymmetric case. Following this, the equations are applied with approximations 
which simplify the solution while reasonable engineering accuracy, as demonstrated 
by experiment, is maintained. 

II. THE AD1 FORMS OF THE HEAT EQUATION 

One-dimensional Crank-Nicolson [4] differencing of the transient heat equation 
yields tridiagonal matrices which are economical to solve by a variant of Gaussian 
elimination as suggested, for example, in Varga [ 141. Moreover, tridiagonal systems 
which stem from finite-difference approximations to parabolic partial differential 
equations tend to be diagonally dominant and well conditioned as discussed in 
Forsythe and Moler [15, p. 1171. For multidimensional problems, alternating- 
direction-implicit or ADI methods of solution are generically referred to. These 
methods entail cyclic application of one-dimensional Crank-Nicolson differencing 
to one spatial coordinate after another. 
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Prior to expressing the transient three-dimensional heat or diffusion equation 
(aT/at = olV2T + $“/pc) in AD1 form, certain ground rules are formulated. The 
nonlinearity caused by temperature-dependent properties will be handled in an 
approximate manner as, for example, in [16]. This approximate method of 
evaluating properties at the last known temperature avoids the complexity of 
solving a system of nonlinear algebraic equations at each time step. In other words, 
piecewise linearization is used to approximate the actual property curves by a 
sequence of connected plateaus. The effect of this approximation on consistency 
and convergence cannot be rigorously demonstrated because of the nonlinearities. 

To facilitate writing the AD1 formulations, a second-order spatial differencing 
operator, Sp2, where p denotes a spatial coordinate, is defined. For example, if 
p = X, then 

Note that this differencing operator acting on temperature T does not modify 
superscripts. The subscripts (i, j, k) indicate position (x, y, z) where x = i Ax, 
y = j dy, and z = k dz. Right-hand superscripts such as (n + 1) denote the time 
plane, t = (n + 1) At. Left-hand superscripts such as *Tn+l or **Tn+l denote 
first and second iterates, respectively. The third and final iterate (for three 
dimensions) will be written merely as T n+l in preparation for using it to start the 
next cycle. Finally, let thermal diffusivity, 01 = k/(pc), where p = density, 
k = thermal conductivity, and c = specific heat capacity. With these conventions, 
the three-dimensional AD1 form of the homogeneous isotropic heat equation may 
be written as: 

To avoid the homogeneous isotropic limitation, one would include spatial variation 
of properties with a2(aT) rather than PT. All T’s are known for the nth time-plane 
and must be found for the (n + 1)st time-plane in the following manner. 
Equation (1) is applied successively to each of n nodes, and an n x n tridiagonal 
system is solved for *Tti,t , the first estimate of T$,i at each node. Similarly 
Eq. (2) is applied to each node to find **T%y;,i , the second estimate of TzyT,i . 
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Finally, Eq. (3) is applied to each node for the third and final estimate of Tzi\ at 
each node. 

Inspection shows that one-dimensional Crank-Nicolson differencing, which is 
applied only to the x-coordinate in Eq. (l), propagates through the y and z 
coordinates in Eqs. (2) and (3). It might seem wise to replace the first estimate 
*Tzyli in Eq. (3) by the second estimate **7$,; which is known before Eq. (3) 
is used. This logical fallacy destroys the unconditional stability as shown in 
Richtmyer and Morton [17]. Although Eqs. (l-3) are effective in making the AD1 
method transparent, a more efficient set of equations from a computational view- 
point is obtained by retaining Eq. (l), replacing Eq. (2) by the difference between (1) 
and (2) which we will call (4), and replacing Eq. (3) by the difference between (2) 
and (3) which we will call (5): 

The final trio of three-dimensional equations consists of Eqs. (I), (4), and (5). 
Their use is demonstrated in Section IV. 

For a two-dimensional axisymmetric geometry, another coordinate system 
yields simpler equations. A curvilinear body-contour coordinate s and an 
orthogonal coordinate r will be used as shown in Section III. The orthogonal 
curvilinear AD1 forms of the homogeneous isotropic heat equation are: 

*T;:’ - T:v = a At[&2(*T.::1 + C,JP + ~r2%1 + W’>” WW, (6) 

T n+l _ Wj”“+l = a At &2(Tn+l s.7 s.7 s.r - 7’LJP. (7) 

Equations (6) and (7) are applied to an air-to-ground missile flight in Section III. 
Absolute measurements of s and r are not needed for a nodal solution because 
only the incremental values As and Ar are used. Figure 1 illustrates the incremental 
values for a coarse nodal struture. For accuracy, the example of Section III 

FIG. 1. Orthogonal curvilinear coordinate increments. 
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required a finer mesh. This choice of coordinate system essentially unfolds the 
layered heat shield into a planar layered structure. The usual axisymmetric 
coordinates would have done nicely for the near-conical (actually an ogive) portion 
of the vehicle but not for the hemispherical nose cap. 

The preceding equations each yield tridiagonal systems. Banded matrices which 
occur in practice, especially those that arise from finite-difference approximations 
to parabolic differential equations, are usually diagonally dominant and well 
conditioned. 

The key to solution is Gaussian elimination wherein the number of unknowns 
in each equation is reduced until a simple explicit solution is possible. Such a 
decomposition requires nm2 multiplications for a tridiagonal matrix while n3/3 are 
required for a full matrix [15]. For a tridiagonal matrix, bandwidth = 3 = 2m + 1 
so m = 1 and n = order. Thus nm2 reduces to n-multiplications as compared with 
n3/3 for a full matrix of order n. This major reduction justifies the statement that 
tridiagonal matrices are economical to solve. 

Presentation of finite-difference equations cannot be considered complete without 
statements concerning consistency, stability, and convergence as discussed in 
detail in O’Brien, Hyman, and Kaplan [18] or Carnahan, Luther, and Wilkes [19]. 
Consistency implies that truncation errorsvanish as spatial and temporal increments 
approach zero. That is, a consistent difference equation approximates the partial 
differential equation which it represents. Stability merely means that the ampli- 
fication of errors is bounded. A theorem attributed to Lax guarantees convergence 
when both stability and consistency are satisfied. 

Unconditional stability may be demonstrated for either set of AD1 equations 
(1,4, 5) or (6, 7) by means of the weakened von Neumann necessary condition on 
the amplification factor, &t + ot)/&t): 

I E(t + 4lKt)l < 1 + Wt). (8) 
The term t(t) represents temporal error only. The term U(dt), which represents 
terms of the order of dt, is the “weakening” referred to above which allows for 
legitimate exponential growth. When physics rules out solutions of the form 
edt, the more stringent condition, 1 &t + dt)/&t)l 9 1, may be used. To find the 
amplification factor with the von Neumann method, one assumes that the temporal 
and spatial error contributions may be separated and that their product satisfies 
the difference equations. T = t(t) exp(i C ajxi) is substituted into the difference 
equations to form the product of their amplification factors. 

In an unconditionally stable scheme, such as the present AD1 method, accuracy 
alone dictates the size of time increment. Accuracy is complicated by the fact 
that both truncation and round-off errors combine. Truncation error is established 
by considering the difference between the truncated difference expressions already 
presented and the full Taylor expansions for each derivative. This consideration 
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shows the truncation error to be second-order in space and time plus the error 
associated with the source term when properties are evaluated at the midtime 
plane (n + +). Unfortunately this evaluation requires time-consuming iterative 
or predictor-corrector methods as suggested by Douglas [2]. For expediency, one 
often sacrifices the second-order accuracy in time and evaluates properties explicitly 
at the nth time-plane. In practice, this accuracy is generally as good as the imprecise 
knowledge of material properties anyway. Estimating the error in the source term 
is not generally feasible because of wide variation from case to case. Section III, 
Air-to-Ground Missile Application illustrates the complexity possible in the 
source term. In this application, a previously written boundary layer cold wall 
heating code and a hot wall correction were needed to evaluate the source term 
at each point prior to solving the diffusion equation. 

In addition to truncation error, the finite word length on any digital computer 
causes what is termed “round-off error.” In using Gaussian elimination to solve 
the tridiagonal systems given by the AD1 equations, round-off error can accumulate 
to undesirable Ievels. Opposing effects occur when the time increment is reduced. 
Smaller time increments yield a more accurate approximate to a partial derivative. 
However, reducing the time increment greatly increases the number of operations 
required with the Gaussian elimination method in order to reach a given final time. 
Thus the round-off error increases greatly and may overwhelm the expected gain 
in accuracy from a reduced time increment. 

In the two example problems considered here, let IZ be the number of nodes 
chosen and the order of the tridiagonal systems solved. For the extremely large 
problem in which an y1 x 12 tridiagonal system requires large amounts of core 
and solution time, a further approximation may be desirable. Beginning at the 
boundary of an arbitrary body and working inward, the AD1 equations yield four 
unknowns and three independent equations for each trio of nodes. By evaluating 
the fourth unknown at the nth time-frame instead of the correct (n + 1)st time, 
one solves only 3 x 3 tridiagonal matrices for the complete problem. The accuracy 
of this approximation is controlled by the choice of time increment down to the 
point of domination by round-off error as discussed previously. This crude approxi- 
mation should only be used with caution since it may destroy unconditional 
stability. 

III. AIR-TO-GROUND MISSILE (AGM) APPLICATION 

Pyrolysis and the resulting carbonaceous char formation in the phenolic refrasil 
nosetip of an air-to-ground missile highly attenuate electromagnetic radiation at 
certain wavelengths. Thus, in order to conduct test flights requiring telemetry, 
it was necessary to insert a noncharring antenna window in the nosetip. The analysis 
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consists of determining the specific thickness of antenna window (slip cast fused 
silica) and insulating foam which guarantees that the underlying phenolic refrasil 
will not rise above some predetermined temperature. This predetermined temper- 
ature comes from thermogravimetric and differential thermal analyses as discussed 
in Smith [20]. 

A constraint on total thickness was dictated by the outer body contour in 
conjunction with the minimum central volume for the antenna proper. Another 
constraint is that a certain minimum thickness of phenolic refrasil must be present 
to serve as structural support for the antenna components. 

To carry out this task in an ideal manner would necessitate a simultaneous 
solution of the boundary-layer convective heating equations in conjuction with 
the transient diffusion equation. Instead, the surface recession was minimal so that 
an engineering approximation allowed uncoupling and separate solutions of the 
two sets of equations. First, the trajectory and boundary-layer heating calculations 
were performed for an assumed “cold wall” or reference temperature at the outher 
surface of the missile. These “cold wall heating rates” were then modified with a 
“hot wall correction” and combined with fourth-power radiation to space to form 
the source term in Eqs. (6) and (7). 

With the hot-wall correction consisting of a ratio of enthalpy differences, hot- 
wall heating rates are computed as follows. 

Phzo = cLJ(~r - hw>/@s - bo) (9) 

(h - enthalpy; 4 - heat flux; subscripts: r - recovery; s N stagnation; cw - cold’ 
wall; hw - hot wall). 

Complete details of this application of the AD1 equations (6, 7) are given in 
1201. However, for the present purposes, a summary will suffice. Figure 1 illustrates 
a coarse mesh of orthogonal curvilinear coordinate increment for use with Eqs. (6) 
and (7). The actual solution required a much finer mesh for accuracy. The AGM 
geometry is comprised of a near-conical ogive and a hemispherical nose cap. 

Solutions to Eqs. (6) and (7) yield the temperature profiles plotted in Fig. 2. To 
confirm their accuracy, an independent solution was obtained with an existing 
thermal analyzer [21] with Crank-Nicolson differencing. The agreement between 
the two methods was good enough to obviate any discussion of the differences. 
The importance of the application dictated experimental verification in radiant-heat 
and arc-jet tests. Redundant thermocouples were placed symmetrically to check 
the lower curve of Fig. 2. One thermocouple agreed almost perfectly, while the other 
showed almost 50°C higher at the end of flight. Fortunately, observation through 
a viewing port detected a flame near the high thermocouple. This provided a strong 
justification for discarding an extraneous data point. Furthermore, the agreement 
among two independent numerical methods and one thermocouple should be 
sufficiently miraculous for anyone. 
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J?m. 2. Temperature at antenna window of AGM. 

The ADI sohttions required 30 times less (8 set vs 245 set) CPU time on a 
CDC 6600 than conventional Crank-Nicolson differencing. Because of the 
impossibility of accounting for input-output and peripheral processing, this 
factor of 30 implies unwarranted significance. Henceforth, this gain will be spoken 
of as an order of magnitude. 

IV. ORBImG HOLLOW CUBE APPLICATION 

An orbiting hollow cube at a uniform initial temperature is exposed on two 
sides and one end to short-duration radiant energy deposition. Complete details 
of this application are given in [l]. The three-dimensional AD1 forms of the heat 
equations (1, 4, 5) provide the long-term transient solution. For comparison 
purposes, two cases are considered: (1) equilibration by conduction through cube 
walls only; and (2) conduction through walls, radiation to space, and radiation 
across the interior of the cube. 

Figure 3 shows temperature profiles which agree with intuitive notions. Radiation 
with conduction accelerates the equilibration process. Also the asymptotic steady- 
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FIG. 3. Orbiting hollow cube exposed asymmetrically to radiant deposition (----, 
Conduction only; - - -, Conduction and radiation). 

state solution is the same with or without radiation. To further confirm these 
results, four curves congruent to those in Fig. 3 were generated independently with 
Crank-Nicolson methods. 

Both with and without radiation, the AD1 solutions required 12 times less time 
(128 min vs 11 and 85 min vs 7) on the UNIVAC 1108 than with the conventional 
Crank-Nicolson differencing. Again this is better expressed as an order-of-magni- 
tude improvement. 

V. RESJLTS AND RECOMMENDATIONS 

Many current conduction codes [22] use differencing techniques which are 
obsolete in the sense that they require unnecessarily large amounts of computer 
time for a specified accuracy. The approach in the present paper has been to select 
well-known implicit and explicit schemes as fiducial methods to illuminate charac- 
teristics of the AD1 methods. 
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An explicit technique is preferred for simplicity, but stability constraints often 
force the use of small time steps. This, in turn, increases computer cost as well 
as round-off error. A rare explicit scheme by DuFort and Frankel [6] is uncon- 
ditionally stable. Yet it too has drawbacks when compared with AD1 methods. 
For one thing, the DuFort-Frankel method requires two planes of initial values. 
Providing the second plane of starter values usually requires the troublesome use 
for one time step of another technique [8]. Furthermore, explicit techniques 
appear to be more sensitive to approximation of nonlinearities than ADI methods. 
In a simplistic intuitive manner, one might say that implicit methods dampen the 
sensitivity to boundary conditions by simultaneously considering multiple points. 

In conclusion, for at least two applications, ADZ methods have been shown to 
be an order of magnitude faster than the widely used Crank-Nicolson method 
with far less sensitivity to boundary approximations than the DuFort-Frankel 
method. These boundary approximations are almost mandatory in that they 
preclude solving simultaneous nonlinear algebraic equations at each time step. 
Since AD1 methods are not completely understood by anyone, it is conceivable 
that, in some cases, the approximations and linearizations could lead to an 
undamped error growth. In that event, one would of necessity resort to some other 
method. However, this failure has not yet happened in a practical application so 
confidence is growing. It would seem that AD1 methods could be recommended 
with just one reservation involving existing thermal analyzers. The reservation 
stems from the necessity of tagging conductors with spatial dimensions in order to 
cyclically difference one spatial coordinate after another. For this reason, adding 
AD1 methods to existing thermal analyzers may be undesirably troublesome. 
Existing thermal analyzers are not easily modified to retain knowledge of the 
spatial direction of each conductor in an orthogonal grid system. 
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